~dricottone/chicago

ref: 8058818ab1775985000952de520bcbb8069b7528 chicago/data/README.md -rw-r--r-- 3.8 KiB
8058818aDominic Ricottone Added license 1 year, 7 months ago

#ACS 2021 PUMS

#IPUMS

The ACS databases used here were created and maintained by IPUMS USA, University of Minnesota. Credit for the data belongs with:

  • Steven Ruggles, Sarah Flood, Matthew Sobek, Danika Brockman, Grace Cooper, Stephanie Richards, and Megan Schouweiler. IPUMS USA: Version 13.0 [dataset]. Minneapolis, MN: IPUMS, 2023. https://doi.org/10.18128/D010.V13.0
  • Steven Ruggles, Catherine A. Fitch, Ronald Goeken, J. David Hacker, Matt A. Nelson, Evan Roberts, Megan Schouweiler and Matthew Sobek. IPUMS Ancestry Full Count Data: Version 3.0 [dataset]. Minneapolis, MN: IPUMS, 2021. https://doi.org/10.18128/D014.V3.0

#Household Records

Download a hierachical dataset from IPUMS containing these variables:

  • STATEFIP
  • PUMA
  • REPWT
  • ADJHSG
  • NP
  • TEN
  • VACS
  • VALP
  • SVAL
  • BLD

It should use the ACS 2021 5-year sample.

Optionally, subset the extraction to just Illinois cases (based on STATEFIP). I subset later the cases anyway.

Also collect the SAS read instructions and the basic codebook.

$ gunzip usa_00006.dat.gz
$ wc -l usa_00006.dat
293143 usa_00006.dat

Now I manipulate the codebook into something useful for awk(1).

$ sed -e '11,110!d' usa_00006.cbk | awk '{ print $4 }' | xargs echo
1 4 4 6 8 13 10 1 13 2 5 12 1 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 7 2 2 1 1 7 1

Examine the STATEFIP field. If I hadn't subset cases in the IPUMS portal, I would do that now.

$ awk 'BEGIN {FIELDWIDTHS="1 4 4 6 8 13 10 1 13 2 5 12 1 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 7 2 2 1 1 7 1"} {if ($1=="H"){print $10}}' usa_00006.dat | sort -n | uniq -c
 293143 17

Now subset cases based on the PUMA field.

$ awk 'BEGIN {FIELDWIDTHS="1 4 4 6 8 13 10 1 13 2 5 12 1 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 7 2 2 1 1 7 1"} $11~/035(0[1234]|2[0123456789]|3[012])/' usa_00006.dat >usa_00006_chi.dat
$ wc -l usa_00006_chi.dat
52097 usa_00006_chi.dat

With this, I have a household data file that is restricted to just Chicago.

#Person Records

Download a rectangular dataset from IPUMS containing these variables:

  • STATEIP
  • PUMA
  • REPWTP
  • HHT
  • ADJINC
  • AGEP
  • FER
  • JWMNP
  • JWRIP
  • JWTRNS
  • LANX
  • MAR
  • MIG
  • MLPA
  • MLPB
  • MLPCD
  • MLPE
  • MLPFG
  • MLPH
  • MLPJ
  • SCHL
  • SEX
  • HISP
  • LANP
  • MIGPUMA
  • MIGSP
  • NATIVITY
  • PINCP
  • POBP
  • POVPIP
  • RAC1P

Follow all the same preparation steps as with the household extraction.

$ wc -l usa_00007.dat
621164 usa_00007.dat
$ sed -e '11,132!d' usa_00007.cbk | awk '{ print $4 }' | xargs echo
4 4 6 8 13 10 13 2 5 12 1 1 4 10 1 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 7 2 1 3 2 2 1 1 1 1 1 1 1 1 1 1 2 1 2 4 5 3 1 7 3 3 1
$ awk 'BEGIN {FIELDWIDTHS="4 4 6 8 13 10 13 2 5 12 1 1 4 10 1 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 7 2 1 3 2 2 1 1 1 1 1 1 1 1 1 1 2 1 2 4 5 3 1 7 3 3 1"} {print $8}' usa_00007.dat | sort -n | uniq -c
 621164 17
$ awk 'BEGIN {FIELDWIDTHS="4 4 6 8 13 10 13 2 5 12 1 1 4 10 1 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 7 2 1 3 2 2 1 1 1 1 1 1 1 1 1 1 2 1 2 4 5 3 1 7 3 3 1"} $9~/035(0[1234]|2[0123456789]|3[012])/' usa_00007.dat >usa_00007_chi.dat
$ wc -l usa_00007_chi.dat 
101501 usa_00007_chi.dat